COMPUTER SCIENCE

Grade: XI

NUMBER SYSTEM AND CONVERSION BOOLEAN LOGIC

REFERENCE NOTE

Unit Wise Important Questions for Computer Science XI

Unit 2 Number System and Conversion Boolean Logic

1) What is a number system? What are the types of number systems used in a computer?
2) What is the difference between positional and non-positional number systems?
3) Define radix/base of a number system. What is the radix for binary, octal, decimal and hexadecimal number system?
4) What is a binary number system? Why is it used in computer systems?
5) What is hexadecimal number system?
6) What is Boolean algebra? Give its applications.
7) What is Boolean logic? Explain the three Boolean operators with the help of truth table.
8) What is a truth table? Differentiate between NAND and NOR gate with truth table.
9) What is a logic gate? Construct truth table, logic diagram, Venn diagram of AND, OR and NOT gates.
10) Prove de-Morgan's law with truth table.
11) What is a Boolean law? Explain the different laws of Boolean algebra.
12) State and verify the associative and distributive laws of Boolean algebra.
13) Subtract 10001 from 11011 using 1's and 2's complement method.
14) Convert the following as indicated.
a) (AF9) ${ }_{16}=(\text { ? })_{2}$
b) $(100101)_{2}=(?)_{16}$
c) $(129)_{16}=(?)_{8}$
d) $(2 E A)_{16}=(?)_{10}$
15) Write Short notes on:
a) Principle of Duality?
b) Use of Boolean algebra

Unit 2 Number System and Conversion Boolean Logic

Computer Number System

The number system plays a vital role in computer calculations. Number system is an organized and systematic way of representing numbers. Number systems are basically of two types: non-positional and positional number systems.

1. Non-Positional Number System

The non-positional number system is a number system in which each symbol represents the same value, regardless of its position in the number. The symbols are simply added to find out the value of a particular number. The most common non-positional number system is the Roman Number System. It is a system of representing numbers devised by the ancient Romans. It is based on certain letters which are given values as numerals.

2. Positional Number System

Positional number system can be represented by a few symbols called digits, which represent different values depending on the position that they occupy. The value of each digit in such a number is determined by the digits itself, the position of the digit in the number, and by the base of the number system. The main positional number systems used in computer are decimal, binary, octal and hexadecimal.

Different types of number system are as follows:
a. Decimal number system: A number system having base or radix 10 is called decimal number system.
Examples: (789) ${ }_{10}$ or (789) ${ }_{\text {D }}$
b. Binary number system: A number system having base or radix 2 is called binary number system. Examples: $(110)_{2}$
c. Octal number system: A number system having base or radix 6 is called octal number system. Examples: (1234) 8
d. Hexadecimal number system: A number system having base or radix 16 is called hexadecimal number system. Examples: (C01F) ${ }_{16}$ or (C01F) ${ }_{H}$

1. Decimal Number System

The base or radix of a number system is the number of different symbols available to represent any digit within that system. For example, the decimal system (Base 10) has a radix of 10 . Decimal uses different combinations of 10 symbols to represent any value (i.e. $0,1,2,3,4,5,6,7,8,9$).

2. Binary Number System

A number system having base or radix 2 is called binary number system. It consists of 2 bits: 0 and 1 . It is also known as Binary digits. It is specially used in internal processing of computer system.
An electronic circuit has two states either ON state or OFF state. The bit 1 represents the high voltage i.e. ON state and the bit 0 represents the low voltage i.e. OFF state of an electronic circuit. So it is used in computer system.

3. Octal Number System

A number system having base or radix 8 is called octal number system. It consists of 8 digits: $0,1,2,3,4$, $5,6,7)$. It is also known as octonary number system. The octal system is used in computing as a simple means of expressing binary quantities.

4. Hexa- Decimal Number System

A number system having base or radix 16 is called hexadecimal number system. It consists of 16 digits: 0 , $1,2,3,4,5,6,7,8,9, A, B, C, D, E$ and F. It is also used in computer basically in memory management.

Number Conversion:

Rules

1. Decimal Number System to Others (Binary, Octal, Hexa-Decimal) Number System = Divide $(2,8,16)$
2.Others (Binary, Octal, Hexa-Decimal) Number System to Decimal Number System= Multiply $(2,8,16)$
2. Binary Number system to Octal Number system and Vice versa $=3$ bit binary Grouping Method (421)
3. Binary Number System to Hexa-Decimal Number System and Vice versa= 4 bit binary Grouping Method (8421)
4. Octal Number System to Hexa-decimal Number System and Vice versa=3 bit \& 4 bit groping Method (421 \& 8421)

Number Conversion: Rules in short				
1	Decimal N.S.(10)	To	Others N.S. $(2,8,16)=$	Divide (2,8,16)
2	Others N.S. ${ }_{(2,8,16)}$	To	Decimal N.S.(10) $=$	Multiply (2,8,16) X
3				

Number Conversion examples

a. Decimal to Binary

Here, (149) ${ }_{10}$

2	$\mathbf{1 4 9}$	1
2	74	0
2	37	1
2	18	0
2	9	1
2	4	0
2	$\mathbf{2}$	0
2	1	1
	0	

Therefore, $(149)_{10}=(10010101)_{2}$
b. Decimal to Octal

Here, (804) ${ }_{10}$

8	804	4
8	100	4
8	12	4
8	1	1
	0	

Therefore, $(804)_{10}=(1444)_{8}$
c. Decimal to Hexa-decimal

Here, $(1600)_{10}$

16	1600	0
16	100	4
16	6	6
	0	

Therefore, $(1600)_{10}=(640)_{16}$
d. Binary to Decimal

$$
\text { Here, } \begin{aligned}
(100100)_{2} & =2^{5} \times 1+2^{4} \times 0+2^{3} \times 0+2^{2} \times 1+2^{1} \times 0+2^{0} \times 0 \\
& =32+0+0+4+0+0 \\
& =(36)_{10}
\end{aligned}
$$

e. Octal to Decimal

$$
\text { Here, } \begin{aligned}
(2040)_{8} & =8^{3} \times 2+8^{2} \times 0+8^{1} \times 4+8^{0} \times 0 \\
& =1024+32 \\
& =(1056)_{10}
\end{aligned}
$$

f. Hexa-decimal to Decimal

$$
\text { Here, } \begin{aligned}
(1 \mathrm{EOD})_{16} & =16^{3} \times 1+16^{2} \times \mathrm{E}+16^{1} \times 0+16^{0} \times \mathrm{D} \\
& =4096+256 \times 14+0+1 \times 13 \\
& =4096+3584+13 \\
& =(7693)_{10}
\end{aligned}
$$

g. Binary to Octal

Here, (110111101)2
$110 \quad 111$ (: 3 bit binary grouping method

6
7
5

Therefore, $(110111101)_{2}=(675)_{8}$
h. Binary to Hexa-decimal

Here, $(1001110111)_{2}$

0010	0111	0111
2	7	7

Therefore, $(1001110111)_{2}=(277)_{16}$
i. Octal to Binary

Here, (375) 8

3	7	5
011	111	101

Therefore, $(375)_{8}=(11111101)_{2}$
j. Hexa-decimal to Binary

Here, $(A B C)_{16}$

A	B	C
1010	1011	1100

Therefore, $(A B C)_{16}=(101010111100)_{2}$
k. Octal to Hexa-decimal

Here, (555) 8

5	5	5
101	101	101
$=(101101101)_{2}$		
0001	0110	1101
1	6	D

Therefore, $(555)_{8}=(16 \mathrm{D})_{16}$
I. Hexa-decimal to Octal

Here, (BCA) ${ }_{16}$

B	C	A
1011	1100	1010

$=(101111001010)_{16}$ $101 \quad 111001$ 010 2

Therefore, $(B C A)_{16}=(5712)_{8}$

Fractional Number System Conversion

a. Decimal to Binary

Here, $(0.55)_{10}$

$0.55 \times 2=1.1$	1
$0.1 \times 2=0.2$	0
$0.2 \times 2=0.4$	0
$0.4 \times 2=0.8$	0
$0.8 \times 2=1.6$	1
$0.6 \times 2=1.2$	1

Therefore, $(0.55)_{10}=(0.100011)_{2}$
b. Decimal to Octal

Here, (234.997) ${ }_{10}$

8	234	2
8	29	5
8	3	3
	0	

Also

$0.997 \times 8=7.976$	7
$0.976 \times 8=7.808$	7
$0.808 \times 8=6.464$	6
$0.464 \times 8=3.712$	3
$0.712 \times 8=5.696$	5
$0.696 \times 8=5.568$	5

Therefore, $(234.997)_{10}=(352.776355)_{2}$
c. Decimal to Hexa-decimal

Here, $(689.336)_{10}$

16	689	1
16	43	$11=\mathrm{B}$
16	2	2
	0	

Also

$0.336 \times 16=5.376$	5
$0.376 \times 16=6.016$	6
$0.016 \times 16=0.256$	0
$0.256 \times 16=4.096$	4
$0.096 \times 16=1.536$	1
$0.536 \times 16=8.576$	8

Therefore, $(689.336)_{10}=(2 \mathrm{~B} 1.560418)_{16}$
d. Binary to Decimal

$$
\text { Here, } \begin{aligned}
(101.1101)_{2} & =2^{2} \times 1+2^{1} \times 0+2^{0} \times 1+2^{-1} \times 1+2^{-2} \times 1+2^{-3} \times 0+2^{-4} \times 1 \\
& =4+0+1+0.5+0.25+0+0.0625 \\
& =(5.8125)_{10}
\end{aligned}
$$

e. Octal to Decimal

$$
\text { Here, } \begin{aligned}
(0.1042)_{8} & =8^{-1} \times 1+8^{-2} \times 0+8^{-3} \times 4+8^{-4} \times 2 \\
& =0.125+0+0.0078125+0.00048828125 \\
& =(0.1333)_{10}
\end{aligned}
$$

f. Hexa-decimal to Decimal

$$
\text { Here, } \begin{aligned}
(\text { FA.AEF })_{16} & =16^{1} \times 15+16^{0} \times 10+16^{-1} \times 10+16^{-2} \times 14+16^{-3} \times 15 \\
& =240+10+0.625+0.0546875+0.00366211 \\
& =250.68335
\end{aligned}
$$

g. Binary to Octal

Here, $(101010.110111)_{2}$

101	010	110	111
5	2	6	7

Therefore, $(101010.110111)_{2}=(52.67)_{8}$
h. Binary to Hexa-decimal

Here, (10101.11011) 2

0001	0101	1101	1000
1	5	D	8

Therefore, $(10101.11011)_{2}=(15 . D 8)_{16}$
i. Octal to Binary

Here, $(77.226)_{8}$

7	7	2	2	6
111	111	010	010	110

Therefore, $(77.226)_{8}=(111111.010010110)_{2}$
j. Octal to Hexa-decimal

Here, $(0.376)_{8}$

3		7		6
011		111		110
$=(011111110)_{2}$				
	0111		1111	
	7	F		

Therefore, $(0.376)_{8}=(0.7 \mathrm{~F})_{16}$
k. Hexa-decimal to Binary

Here, (0.5AB) ${ }_{16}$

5	A	B
0101	1010	1011

Therefore, $(0.5 A B)_{16}=(0.010110101011)_{2}$
I. Hexa-decimal to Octal

Here, $(0.226)_{16}$

2	2	6
0010	0010	0110

$=(0.001000100110)_{2}$
001
1

000
0

100 4

110
6

Therefore, $(0.226)_{16}=(0.1046)_{8}$

Binary Arithmetic

a. Binary Addition

Here, 11111 + 10001

11111
$+\quad 10001$ 110000

Here, 1111 + 1111

b. Binary Subtraction

Here, 1100-11

Here, 101010-1001
101010
001001 100001

Rule for addition

$0+0=0$
$0+1=1$
$1+0=1$
$1+1=10$ (0 with carry over 1)
$1+1+1=11$ (1 with carry over 1)
$1+1+1+1=100$ (0 with carry over 10)
$1+1+1+1+1=101$ (0 with carry over 10)

Rule for Subtraction

$0-0=0$
1-0=1
1-1=0
$0-1=1$ (with borrowing 1 from left side Then it becomes 10 i.e. 10-1=1)
c. Binary Multiplication

Here, 1010×1010

Here, 1111×1111

$$
1111
$$

x $\quad 1111$
1111
1111x
1111xx
1111xxx
11100001

d. Binary Division

Here, 110100 / 110

Here, 11010001 / 1001
1001) 11010001 (10111

1001

1000
0000

10000 01001

1110
1001
1011
1001

10
Therefore, Quotient $=10111$ and Remainder $=10$

1's and 2's Binary Subtraction Method

A compliment is process of representing the negative numbers or bits in digital computer system. Complements are used in digital computers for simplifying the subtraction operation and for logical manipulation. Using complements, all the arithmetic operators can be performed in the form of addition. The process of subtraction using 2's complement is given below:
a. Make the number of digits equal in both minuend and subtrahend.
b. Calculate 2's complement of subtrahend.
c. Calculate sum of minuend and 2's complement of subtrahend.
d. Check the overflow digit (carry).
e. If there is overflow digit, discard it and the remaining bits would be final answer.
f. If there is no overflow bit then the result must be negative. So again, calculate 2's complement of the sum and that would be the final answer.

1'S AND 2'S COMPLEMENT BINARY SUBTRACTION METHOD

1. Subtract 110 from 1101 using 1's complement binary subtraction method.

Using 1 's complement method:
Here Main value= 1101
Second Value= 110
i. Make the number of bits equal as 1101 and 0110.
ii. $\quad 1$'s complement of second value 0110 is 1001.
iii. Add both the bits:

$$
1101
$$

$+1001$
10110
Here, we got overflow bit so discard it and add the remaining part.
$0110+1=0111$
Thus, $1101-110=111$
Using 2's complement method:
Here Main value= 1101
Second Value= 110
i. Make the number of bits equal as 1101 and 0110.
ii. $\quad 1$'s complement of second value 0110 is 1001.
iii. $\quad 2$'s Complement of $1001+1=1010$.
iv. Add both numbers:

1101
$+\underline{1010}$
$\underline{1} 0111$
Here, we got overflow bit which is discarded and the remaining part is our answer.
Thus, 1101-110=111
2. Subtract $\mathbf{1 1 1 1}$ from $\mathbf{1 1 0 0}$ using $\mathbf{1}$'s and 2 's complement binary subtraction method.

Here, Main value $=1100$
Second value= 1111
Both are equal digit.
Using 1 's complement method:
i. 1's complement of second value 1111 is 0000.
ii. Add both the bits:
$+\underline{0000}$
1100
Here, we did not get overflow bit so we again calculate 1's complement of 1100 i.e. 0011 and put minus sign before it.
Thus, $1100-1111=-11$

Using 2's complement method:

i. 1's complement of second value 1111 is 0000.
ii. 2's complement of $0000+1=0001$.
iii. Add both numbers:

$$
1100
$$

$+\underline{0001}$
1101
Here, we did not get overflow bit so, we again calculate 2's complement of 1101 and put minus sign before it.
i.e. $0010+1=0011$

Thus, $1101-110=-11$

9'S AND 10'S COMPLEMENT DECIMAL SUBTRACTION METHOD

1. Subtract 123 from 1234 using 9 's and 10 's decimal subtraction method. Using 9's complement method:

Main value=1234
Second value=123
i. Making the numbers equal in both minuend and subtrahend as 1234 and 0123.
ii. $\quad 9$'s complement of 0123 is $(9999-0123)=9876$.
iii. Adding both numbers:

$$
1234
$$

$+\underline{9876}$
11110
Here, we got overflow digit, so we discard it and add it to the remaining part.
Thus, $1110+1=1111$

Using 10's complement method:

Main value=1234
Second value=123
i. Making the numbers equal in both minuend and subtrahend as 1234 and 0123.
ii. $\quad 9$'s complement of 0123 is $(9999-0123)=9876$.
iii. 10's complement of 0123 is $(9876+1)=9877$.
iv. Adding both numbers:
$+\underline{9877}$
11111
Here, we got overflow digit, so we discard it and remaining will the answer.
Thus, 1234-123 = 1111
2. Subtract 4567 from 567 using 9's and 10's decimal subtraction method.

Using 9's complement method:
Main value= 567
Second value= 4567
Using 9's complement method:
i. Making the numbers equal in both minuend and subtrahend as 0567 and 4567.
ii. $\quad 9$'s complement of 4567 (9999-4567) is 5432.
iii. Adding both numbers:

0567
$+\underline{5432}$
5999
Here, we did not get overflow digit, so we again calculate 9's complement of it.
i.e. 9999-5999 becomes 4000

Thus, 567-4567 = 4000

Using 10's complement method:

i. Making the numbers equal in both minuend and subtrahend as 0567 and 4567.
ii. 9's complement of 4567 (9999-4567) is 5432.
iii. 10's complement of $4567(5432+1)$ is 5433 .
iv. Adding both numbers:

0567
$+\underline{5433}$
6000
Here, we did not get overflow digit, so we again calculate 10's complement of it.
i.e. $(9999-6000)=3999+1=4000$

Thus, $567-4567=4000$

Boolean algebra

Boolean algebra:

Boolean algebra is a study of mathematical operations performed on certain variables (called binary variables) that can have only two values: true (represented by 1) or false (represented by 0).

Logic Function (Boolean Function):

A logic function is an expression algebraically with binary variables, logical operation symbols, parenthesis and equal sign, is known as Boolean function. Example, F=A.B.C'+A.B

Truth Table:

Truth table is a table which represents all the possible values of logical variables/statements along with all the possible results of the given combinations of values. For example, following logical statements can have only one of the two values (TRUE (YES) or FALSE (NO)).

Logic gates:

Logic gates perform basic logical functions and are the fundamental building blocks of digital integrated circuits. Most logic gates take an input of two binary values, and output a single value of a 1 or 0 .

1. AND Gate: AND gate generates true output if all the inputs are true, otherwise it generates false output. It is denoted by (.) operator and graphically represented by:

Logical Symbol

Truth Table

Input		Output
A	B	F=A.B
0	0	0
0	1	0
1	0	0
1	1	1

2. OR Gate: OR gate generates true if at least any one of the input is true, otherwise it generates false Output. It is denoted by (+) operator and graphically represented by:

Logical Symbol

Truth Table

Input		Output
\mathbf{A}	\mathbf{B}	$\mathrm{F}=\mathrm{A}+\mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	1

3. NOT Gate: It is also known as inverter. It inverts the input state from true to false and vice versa. It is denoted by (-) or (') operator and graphically represented by:

Logical Symbol

Truth Table

Input	Output
A	$\mathrm{~F}=\mathrm{A}^{\prime}$
0	1
1	0

4. NAND Gate: NAND gate is the combination of AND and NOT gate. NAND gate generates true (1) output if at least any of the input is false otherwise, it generates false output. Graphically it is represented by: Logical Symbol

Truth table

Input		Output	
A	B	A.B	F=(A.B)'
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

5. NOR Gate: NOR gate is the combination of the OR gate and NOT gate. This electronic gate produces True (1) output when all inputs are False (0) otherwise the output will be False (0). It is the complement of the OR gate. It has two or more inputs and only one output.

Logical Symbol:
The truth-table of NOR gate is:

Input		Output	
A	B	(A+B)	$\mathrm{F}=(\mathrm{A}+\mathrm{B})^{\prime}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

6. Exclusive (X-OR)Gates:

The XOR gate produces false output (0) when both the inputs are same otherwise, the output will be true (1). It can also have two or more inputs which produces only one output.
Logical Symbol:

The truth table of X-OR gate is given below:

Inputs					Output	
A	B	A^{\prime}	B^{\prime}	$A^{\prime} . B$	$A^{\prime} B^{\prime}$	F=A'.B+A.B'
0	0	1	1	0	0	0
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	1	0	0	0	0	0

7. Exclusive-NOR(X-NOR) Gate:

The XNOR (exclusive-NOR) gate is a combination XOR gate followed by an inverter. Its output is "true" if the inputs are the same and output is "false" if the inputs are different.
The X-NOR gate symbol is given below:

The truth table of X-NOR gate is given below:

Input					Output	
A	B	A' $^{\prime}$	\mathbf{B}^{\prime}	$\mathbf{A}^{\prime} . \mathbf{B}^{\prime}$	A.B	F=A.B+A'.B'
0	0	1	1	1	0	1
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	1	0	0	0	1	1

There are 2 De Morgan's laws or theorems:

a. Theorem 1: The complement of a sum of variables is equal to the product of the complement of each variables.
$(A+B)^{\prime}=A^{\prime} . B^{\prime}$

\mathbf{A}	\mathbf{B}	\mathbf{A}^{\prime}	\mathbf{B}	$\mathbf{A}+\mathbf{B}$	$\mathbf{(A + B})^{\prime}$	$\mathbf{A}^{\prime} . \mathbf{B}^{\prime}$
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Here, $(A+B)^{\prime}=A^{\prime} . B^{\prime}$ thus proved.
b. Theorem 2: The complement of a product of variables is equal to the sum of the complement of each variables.
(A.B)' $=A^{\prime}+B^{\prime}$

\mathbf{A}	\mathbf{B}	\mathbf{A}^{\prime}	\mathbf{B}^{\prime}	$\mathbf{A . B}$	$\mathbf{(A . B})^{\prime}$	$\mathbf{A}^{\prime}+\mathbf{B}^{\prime}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

Here, $(\mathrm{A} . \mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$ thus proved.

Duality principle:

Duality principle state can be obtained by replacing AND (.) with OR (+) and vice versa, 1 with 0 and vice versa keeping variables and complements and variables are unchanged.
For example, duality of the expression $A \cdot B^{\prime}=A+B^{\prime}$ and $A^{\prime} . B+C=A^{\prime}+B \cdot C$

Laws of Boolean algebra

The Boolean laws are the rules for manipulating Boolean variables by using Boolean operations. This set of rules states that how variables and values assigned with the Boolean operators reacts. These laws are used to circuit minimization. The process of shorting the length and using minimum components to construct same functioning circuit is called circuit minimization. The Boolean laws are as follows.
7.
a.

Here, $A .(B+C)=A+(B . C)$
b.

Here, A.B $+\mathrm{C} .1+0.1=\mathrm{A}+\mathrm{B} . \mathrm{C}+0.1+0$
C.

Here, C.D + A. $0+1$ = C + D. $A+1.0$
d.

Here, $1.0+A+C .1=0+1 . A . C+0$
8.

Associative law states that when ORing or ANDing more than two variables, the result is the same regardless of the grouping of the variables.
(a) $(A+B)+C=A+(B+C)$
(b) $(A B) C=A(B C)$

Proof:

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{A}+\mathbf{B}$	$\mathbf{B}+\mathbf{C}$	$(\mathbf{A}+\mathrm{B})+\mathbf{C}$	$\mathbf{A}+(\mathrm{B}+\mathrm{C})$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	0	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Here, $(A+B)+C=A+(B+C)$ thus proved.

Distributive law states that ORing/ANDing two or more variables and then ANDing/ORing the result with a single variable is equivalent to ANDing/ORing the single variable with each of the two or more variables and then ORing/ANDing the products/sums.
(a) $A(B+C)=A \cdot B+A . C$
(b) $A+(B \cdot C)=(A+B) \cdot(A+C)$

Proof:

A	B	C	B+C	A.B	A.C	A.(B+C)	A.B+A.C
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	1	0	0	0	0
1	0	1	1	0	1	1	1
1	1	0	1	1	0	1	1
1	1	1	1	1	1	1	1

Here, $A \cdot(B+C)=A \cdot B+A \cdot C$ thus proved.
9.
a.

Here,

$$
\begin{aligned}
& A B+A^{\prime} B C+B C \\
& =A B+B C\left(A^{\prime}+1\right) \\
& =A B+B C \\
& =B(A+C)
\end{aligned}
$$

The truth table is:

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{A}+\mathbf{C}$	$\mathbf{B}(\mathbf{A}+\mathbf{C})$
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	1
1	1	1	1	1

b.

Here,

$$
\begin{aligned}
& P Q^{\prime}+Q(P+Q)+P\left(P^{\prime}+Q\right) \\
& =P Q^{\prime}+P Q+Q Q+P P^{\prime}+P Q \\
& =P Q^{\prime}+P Q+Q+0 \\
& =P\left(Q^{\prime}+Q\right)+Q \\
& =P+Q
\end{aligned}
$$

The truth table is:

\mathbf{P}	\mathbf{Q}	$\mathbf{P}+\mathbf{Q}$
0	0	0
0	1	1
1	0	1

1	1	1

C.

Here,

$$
\begin{aligned}
& (X+Y)\left(X Y^{\prime} Z+X Y Z+X Y^{\prime} Z^{\prime}\right) \\
& =X Y^{\prime} Z+X Y Z+X Y^{\prime} Z^{\prime}+X Y Y^{\prime} Z+X Y Z+X Y Y^{\prime} Z^{\prime} \\
& =X Y^{\prime} Z+X Y Z+X Y^{\prime} Z^{\prime}+0+0 \\
& =X Y^{\prime}\left(Z+Z^{\prime}\right)+X Y Z \\
& =X Y^{\prime}+X Y Z \\
& =X\left(Y^{\prime}+Y Z\right) \\
& =X\left(Y^{\prime}+Z\right)
\end{aligned}
$$

The truth table is:

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{Y}^{\prime}	$\mathbf{Y}^{\prime}+\mathbf{Z}$	$\mathbf{X}\left(\mathbf{Y}^{\prime}+\mathbf{Z}\right)$
0	0	0	1	1	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	1	0	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	1	1

10.

Here,
$\mathrm{a}=\mathrm{A} . \mathrm{B} \cdot \mathrm{C}$
$b=A^{\prime}+B+C$
$c=A^{\prime} . B^{\prime} . C$

Now, $a+b+c=A \cdot B \cdot C+A^{\prime}+B+C+A^{\prime} \cdot B^{\prime} \cdot C$

$$
\begin{aligned}
& =B+A^{\prime}+C+A^{\prime} B^{\prime} C \\
& =A^{\prime}+B^{\prime}+C
\end{aligned}
$$

Principle of duality

> Changing to symbol OR (+) operation from AND (.) operation or AND (.) operation from OR (+) operation and digits 0 and 1 that is called principle of duality.
> Example, $(x+y) . z=(x . y)+z$

Uses of gates

$>$ All the gates are used to design digital electronic circuit.
$>$ XOR and XNOR gates are used for circuit minimization.
$>$ The NAND and NOR gates are used for construction of flash memory. Flash memories are used in various devices like PDA, Laptops, mobiles phones etc.
> Flash memory are constructed by using NOR are gates and external memories constructor by using NAND gates. For example, mini SD, Micro SD, Memory Cards.

Uses of Boolean algebra in computer science

> Logical function are useful not only to the hardware designer in implementing circuits but also to software designer in making decision, performing arithmetic, recognizing characters and patterns, checking for errors, formatting output and assembling and disassembling data.

